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a b s t r a c t

A Direct Numerical Simulation (DNS) method has been developed to solve the heat transfer equations for
the computation of thermal convection in particulate flows. This numerical method makes use of a finite
difference method in combination with the Immersed Boundary (IB) method for treating the particulate
phase. A regular Eulerian grid is used to solve the modified momentum and energy equations for the
entire flow region simultaneously. In the region that is occupied by the solid particles, a second parti-
cle-based Lagrangian grid is used, which tracks particles, and a force density function or an energy den-
sity function is introduced to represent the momentum interaction or thermal interaction between
particle and fluid. The numerical methods developed in this paper have been validated extensively by
comparing the present simulation results with those obtained by others.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction vier–Stokes equation for the fluid and the equations of motion
Particulate flows take place in many natural and engineering
processes, such as the sedimentation of sand particles in rivers;
the evaporation and combustion of drops; the movement of blood
cells in capillaries; the motion of catalyst particles in chemical
reactors; and fluidization of solid fuels in reacting bed systems.
In many of these cases, the multiphase flows not only involve the
motion of particles and the momentum/mechanical interactions
between particles and fluids, but also involve heat transfer be-
tween the two phases.

There are three common techniques that have been used exten-
sively for the numerical simulations of particulate flows: one is the
two-phase continuum model, which treats the solid and liquid
phases as two fluids governed by separate momentum equations.
The effect of fluid and particle interactions are mainly reflected
in the apparent viscosity and the drag coefficient used in the gov-
erning equations. The second model is the discrete particle model.
This model considers each particle as a point force and determines
the position of particles by solving the Lagrangian equation of mo-
tion for every particle in the flow field. The force acting on each
particle is approximated by an empirical drag force. The third ap-
proach, which has gained popularity in the recent years because
of the improvement of computational power, is the Direct Numer-
ical Simulation (DNS). This approach treats separately the solid
particles and the fluid. The determination of the solid–fluid inter-
action is accomplished simultaneously via the solution of the Na-
ll rights reserved.
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for particles.
Several numerical schemes, which may be classified as DNS

methods have been developed in the past decade: Feng et al. [1]
studied the sedimentation of two-dimensional circular particles
using the arbitrary Lagrangian–Eulerian (ALE) approach. They
essentially solved the Navier–Stokes equations, subject to the no-
slip boundary conditions on the surface of the particles. This meth-
od requires mesh-adapting, when the particles are moving, and it
is not efficient in the simulations of systems with a large number
of particles. A more efficient approach has been developed re-
cently, which is based on the Immersed Boundary (IB) method
and does not require re-meshing. The IB method was introduced
by Peskin [2] to account for fluid–solid interactions. This method
uses a fixed Cartesian mesh for the fluid, and a moving, Lagrangian
grid for the particle. A force density function is usually defined in
conjunction with this method to represent the effect of the parti-
cles on the fluid. Various schemes have been proposed to compute
the force density functions [3–10]. Among them, the direct-forcing
scheme introduced by Mohd-Yusof [11,12] has been a favorite
choice of many, because of its simplicity [6,8–10] and ease in
implementation. In parallel, Glowinski and his collaborators [13–
16] developed a finite-element based fictitious domain approach
for solving particulate flow problems. They have used Lagrangian
multipliers to enforce the rigid body motion.

Other numerical approaches that do not require re-meshing has
been proposed by Kalthoff et al. [17] and Zhang and Prosperetti
[18,19]. Such methods incorporate an analytical Stokes flow solu-
tion for the region adjacent to the particle surface with some of
the parameters determined by matching the outer flow conditions.
The Lattice Boltzmann Method (LBM) was used by many since Ladd
successfully applied it to particulate flows [20,21] using the
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Nomenclature

A radius of a spherical particle
Bi Biot number
c specific heat
f force density
g gravitational acceleration
Gr Grashoff number
IP moment of inertia of a particle
k thermal conductivity
L length variable
n normal outward vector
p Pressure
Pe Peclet number
Pr Prandtl number
q energy source
r radius of a sphere
Re Reynolds number
s, S area
T temperature
t time variable
u, U velocity
v, V volume
x position coordinate
y position coordinate

Greek symbols
q density
k energy density function
X entire domain
b the thermal expansion coefficientP

Si region occupied by the particles
l dynamic viscosity
r shear stress tensor
x angular velocity of the particle
H dimensionless temperature
e pre-defined tolerance

Subscripts/superscripts
0 dimensionless variable
? a vector
0 value of ambient fluid
f property related to fluid
k value at the kth iteration
L value at Lagrangian node
n value at the nth time step
p property related to particle
r relative value
ref reference value
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‘‘bounce-back” method. The LBM has gained popularity for its com-
putational efficiency and easy implementation in numerical parall-
elization. Feng and Michaelides [6,8,9] combined the LBM and IB
approach to overcome some of the drawbacks of the bounce-back
scheme in treating boundary conditions at the surface of the
particles.

DNS with heat transfer in multiphase systems has not received
much attention yet. Among the limited studies reported in the lit-
erature, Gan et al. [22,23] studied the two-dimensional interaction
of heat transfer between the particles and their surrounding fluid
by using the ALE finite-element method. Yu et al. [24] employed
the fictitious domain method to study two-dimensional particulate
flow with heat convection. They resolved the heat interaction be-
tween the flow and particles for various temperature boundary
conditions on the particles by introducing Lagrangian multipliers.

The IB method has been applied for the study of heat transfer
problems involving stationary boundaries. Kim and Choi [25] pro-
posed an IB method for the solution of two-dimensional heat flow
problems with complex geometries. Also Pacheco et al. [26] pre-
sented an IB finite-volume method to study the heat transfer and
fluid flow problems with non-staggered grids. However, there is
no study available on the use of IB for the heat transfer in particu-
late flow. Though the fictitious domain method and immersed
boundary method use similar concepts, the implementation details
are quite different, and IB is more straightforward and easier to
apply.

The objective of this paper is to develop a relatively simple
numerical method that utilizes the IB technique for the solution
of the thermal interaction between particles and fluid. The heat
and mass transfer is an important aspect of particulate-flows.
Industrial applications can be found in the safe handling of radio-
active waste materials, the transport of mixtures in food process-
ing and the fluidization of solid fuels in bioreactors. In many of
these applications, solid phase has relatively much higher con-
ductivity compared to fluid or gas phase; and we can assume par-
ticles to have uniform temperature (Biot number Bi = 0). In this
paper, we will focus on such cases; the Bousinesq assumption is
also adopted for the properties of the fluid. Two types of grids
are used to solve the particle–fluid interactions: the first is a fixed
Eulerian grid for the entire flow domain and the second is a mov-
ing Lagrangian grid for each particle. The modified momentum
and energy equations are solved only on the Eulerian grid. The
no-slip boundary condition on the particle surface and the rigid
body motion of particles are enforced only in the Lagrangian grid.
To account for the fluid–particle interactions, a force density and
an energy density function are introduced into the momentum
and energy equation, respectively. The temperature boundary
condition is enforced by adding an energy density function into
the energy equation. These density functions represent the total
effects of the net momentum and energy exchanges between par-
ticles and fluid. A simple and very effective scheme suitable for
the finite-difference method is also presented to resolve the issue
of the instability that is caused by the motion of very light parti-
cles. This numerical method is implemented on staggered grids
using an explicit finite difference approach. By applying the pres-
ent method, we studied several two-dimensional particulate flow
problems and obtained results that demonstrate the validity,
accuracy and robustness of this method. More examples using
the DNS method developed in this paper can also be found in a
recent paper by the authors [27]. It must be pointed out that
the IB and the fictitious domain method have a similar concept;
however, compared to the fictitious domain method, the current
IB based approach provides a much simple and effective way in
solving heat and mass transfer in particulate flows with high so-
lid–fluid thermal conductivity.

2. Problem description

We consider a particulate flow system composed of several cir-
cular rigid particles suspended in an incompressible Newtonian
fluid, as shown in Fig. 1. The entire computational domain, X, is
composed by the fluid region, L, and the solid particle region,P

SiðS1 þ S2 in the figureÞ. The domain is surrounded by a bound-
ary, C. The boundary/surface of the ith particle Si is denoted by oSi.
The particles are assumed to have uniform temperature, which im-
plies that the Biot number is close to zero, a valid approximation



Fig. 1. Conceptual model of two circular particles suspended in a fluid.
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for small, solid particles with high thermal conductivity. Tempera-
ture gradients in the fluid cause the variation of fluid properties.
For simplicity, we employ the Boussinesq approximation for the
fluid field and study the momentum and heat interactions between
the particles and the fluid.

2.1. Momentum interaction between the fluid and the particles

The concept of the immersed boundary [2] enables one to de-
scribe the entire domain X, that is occupied by the fluid and solid
particles, by using the following modified Navier–Stokes
equations:

qf
o~u
ot
þ qf~u � r~u ¼ �~rpþ lfr2~uþ~f ; ~x 2 X ð1Þ

~r �~u ¼ 0; ~x 2 X ð2Þ

where qf and lf are the fluid density and dynamic viscosity of the
fluid, respectively; u is the velocity field developed in the fluid;
and p is the fluid pressure. It is evident that, compared to the usual
form of the Navier–Stokes equation, Eq. (1) contains an additional
term, f, which is called ‘‘the force density field.” This force density
field is equal to zero in the regions occupied by the fluid. It is gen-
erally believed that the interior field of the solid particles plays an
insignificant role on the motion of the particles per se. For example,
Uhlmann [10] who conducted two-dimensional test computations
of particle sedimentation concluded that ‘‘locating force points
throughout the particle volume does not lead to significantly differ-
ent results.” Hence, for a pure solid–fluid momentum interaction
problem, the force density may only be prescribed over the surface
of the particles and may be computed by one of several schemes
that were developed for this purpose, such as the spring model
[5,6], or the direct-forcing scheme [8–10]. In the case of solid parti-
cles, it was proven that the direct-forcing scheme is more conve-
nient than the spring model scheme because it does not introduce
additional empirical parameters. Here we adopt the direct-forcing
scheme for the computation of the force density.

Obviously, the momentum interactionbetween fluid and particles
results in the motion of particles, which may be described as follows:

A. Translational motion:

qpVp
d~UP

dt
¼ qf

I
oS

~r � d~sþ
Z

S
ðqp � qf Þ~gdv: ð3Þ

B. Rotational motion:

Ip
d~xp

dt
¼ qf

I
oS
ð~x�~xpÞ � ð~r � d~sÞ; ð4Þ

where qp, Vp, Ip, Up and xp are the particle’s density, volume, mo-
ment of inertia, translational velocity, and angular velocity, respec-
tively; xp is the position vector of the center of mass of the particle;
and r is the fluid stress tensor.
The first term in the right-hand side of Eq. (3) is the interaction
force between the particle and the surrounding fluid. The second
term is the buoyancy force. The term in the right-hand side of
Eq. (4) is the angular momentum impulse induced by the fluid–
particle interaction. If the force density is prescribed for the entire
region that represents the solid, one may apply the Cauchy princi-
ple to write the surface integrals as follows:

qf

I
oS

~r � d~s ¼ qf

Z
S

~f dvþ d
dt

Z
S
qf~udv; ð5Þ

and

qf

I
oS
ð~x�~xpÞ � ð~r � d~sÞ ¼ � qf

Z
oS
ð~x�~xpÞ �~f dv

þ qf
d
dt

Z
oS
ð~x�~xpÞ �~udv: ð6Þ

By using the rigid body motion conditions, it can be shown that the
time derivatives of the volume integrals in the above two equations
yield the following contributions of the internal fluid mass, as de-
scribed by Glowinski [13] and Uhlmann [7]:

d
dt

Z
S
qf~udv ¼ qf Vp

dUp

dt
; ð7Þ

and

qf

Z
S
ð~x�~xpÞ �~f dv ¼ qf

Ip

qp

d~-p

dt
: ð8Þ

Substituting these results into Eqs. (3) and (4) one obtains:

ðqp � qf ÞVP
d~UP

dt
¼ qf

Z
S

~f dvþ ðqp � qf ÞVp~g; ð9Þ

and

IP 1�
qp

qf

 !
d~xP

dt
¼ �qf

Z
Vp
ð~x�~xpÞ �~f dt: ð10Þ

The force density may be determined using the direct forcing
scheme to yield the following expression:

~f ¼ qf
o~u
ot
þ qf~u � r~uþ ~rp� lfr2~u; ~x 2

X
Si

; ð11Þ

where ~u is the velocity field in the solid region. Inside the particle,
the motion of a rigid body condition determines the velocity field at
any point ~x:

~u ¼ ~UP þ ~xP � ð~x�~xPÞ: ð12Þ
2.2. Energy interactions between fluid and particles

We consider that particles have uniform temperatures. This is a
valid assumption if the thermal conductivity ratio between the so-
lid particles and the fluid is high, or equivalently, if the Biot num-
ber is very small: Bi� 1. An example in Section 4.3 will show that
reasonable results could be obtained even for thermal conductivity
ratio of 5. However, each particle’s temperature is transient and is
denoted by the function Tp(t). This temperature is determined by
the energy balance of each particle. At the surface of the particles,
the fluid and particle temperatures are equal:

Tf ð~x; tÞ ¼ TpðtÞ; ~x 2 oS: ð13Þ
Similar to the momentum interaction, which was described in Sec-
tion 2.1, the temperature field of the entire region is governed by
the following modified energy equation:

qf cf
oT
ot
þ qf cf~u � rT ¼ kfr2T þ qp þ k; ~x 2 X; ð14Þ
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where cf and kf are the specific heat and thermal conductivity of
fluid and qp represents any energy sources inside the particle. The
additional energy density term k is added to enforce the tempera-
ture field in the region occupied by the particles. As in the case of
the force balance equation, this term is zero in the field occupied
by the fluid. In the solid region this term is computed using the fol-
lowing equation:

k ¼ qf cf
oT
ot
þ qf cf~u � rT � kfr2T � qp; ~x 2

X
Si; ð15Þ

where T is the temperature of the particle. The numerical technique
for enforcing the condition of T = Tp(t) in the solid region will be dis-
cussed in a subsequent section.

The transient temperature of the particles, Tp(t), may be deter-
mined by solving the following differential equation, which is ob-
tained from the energy balance for the particle:

qpVpcp
dTp

dt
¼
I

oS
kf
~rTf � n

*
dsþ

Z
S

qpdv ð16Þ

where ~n is the outward normal vector. Similar to the treatment of
equations of particle motion in (3) and (4), the energy balance Eq.
(16) can be converted into the following:

ðqpcp � qf cf ÞVp
dTp

dt
¼
Z

S
qpdv: ð17Þ

For particles that have different temperatures than the fluid, the
presence of this term will create a temperature gradient within the
fluid, which would modify the fluid properties. This effect may be
computed in a conceptually easy manner by using empirical equa-
tions for the properties of the fluid at every point of the grid that rep-
resents the fluid. However, this is a computationally intensive
method. For relatively small temperature difference between the par-
ticles and fluid, the Boussinesq approximation has been often used
successfully for the coupling of the energy and momentum equations.
Hence, the momentum Eq. (1) may be rewritten as follows:

qf 0
o~u
ot
þqf 0~u�r~u¼�~rpþlfr2~uþbf ðT�TfoÞ~gþ~f ; ~x2X ð18Þ

where the subscript 0 denotes values of the undisturbed fluid and bf

is the thermal expansion coefficient of the fluid.

2.3. Governing equations in dimensionless form

The numerical solution and the numerical algorithm is facili-
tated by the following dimensionless variables:

u0 ¼ u
Uref

; l0 ¼ l
Lref

; t0 ¼ t
Lref =Uref

;p0 ¼ p

qf 0U2
ref

; f 0 ¼
fLref

qf 0U2
ref

; ð19Þ

for the momentum equation, and,

H ¼ T � Tf 0

Tref
; q0 ¼

qLref

qf 0cf Tref Uref
; k0 ¼ kLref

qf 0cf Tref Uref
ð20Þ

for the energy equation. Uref, Lref and Tref are the reference velocity,
length-scale and temperature, respectively. The convective time-scale
(Lref/Uref) is used as the reference time-scale for the problem. Tf0 is the
ambient fluid temperature, and in most cases, Tref is chosen to be the
initial temperature difference between the particles and the ambient
fluid. We also define the following dimensionless parameters:

qr ¼
qp

qf 0
; cr ¼

cp

cf
; ð21Þ

Re ¼
qf uref lref

lf
; Pr ¼

lf cf

kf
; Pe ¼ Pr Re;

Gr ¼ gbLref

U2
ref

ðTp0 � Tf 0Þ
qf Uref Lref

lf

 !
; ð22Þ
where Re is the Reynolds number; Pr is the Prandtl number; Pe is
the Peclet number; and Gr is the Grashoff number.

In the sections that follow, the equations are simplified by omit-
ting the superscript prime from all the variables. It must be
remembered, however, that the variables in the equations that fol-
low are dimensionless. Hence, the following set of dimensionless
governing equations may be obtained:

A. For the velocity field:

o~u
ot
þ~u � ~r~u ¼ �~rpþ 1

Re
r2~uþ Gr

Re2
~eg þ~f ; ~x 2 X; ð23Þ

where eg is the unit vector in the direction of gravitational
acceleration.

B. For the force density field:

~f ¼ o~u
ot
þ~u � ~r~uþ ~rp� 1

Re
r2~u; ~x 2

X
Si: ð24Þ

C. Continuity equation:

~r �~u ¼ 0; ~x 2 X: ð25Þ

D. For the velocity field inside the solid particle region:

~u ¼ ~UP þ ~xP � ð~x�~xPÞ: ð26Þ

E. For the temperature field:

Energy equation :
oH
ot
þ~u � ~rH ¼ 1

Pe
r2Hþ qþ k; ~x 2 X ð27Þ

Energy density function : k ¼ oH
ot
þ~u � ~rH� 1

Pe
r2H� q;

~x 2
X

Si ð28Þ

F. For the motion of the particles:

ðqr � 1ÞVp
d~Up

dt
¼
Z

S

~f dvþ ðqr � 1ÞVp
gLref

U2
ref

~eg ð29Þ

Ip

qr
ðqr � 1Þd

~xp

dt
¼ �

Z
S
ð~x�~xpÞ �~f dv ð30Þ

In two dimensions we have the following closure expressions:
Vp ¼ pr2; Ip ¼ 1

2 qrpr4.
G. For the temperature of the particles:

ðqrcr � 1ÞVp
dHp

dt
¼
Z

S
ðkþ qpÞdv: ð31Þ

The uniformity of temperature in the solid region is enforced by the
condition:
H ¼ HPðtÞ: ð32Þ
The initial conditions of the above set of equations are:

U
*

Pðt ¼ 0Þ ¼ ~UP0; ~xPðt ¼ 0Þ ¼ xP0;~uðt ¼ 0Þ ¼~u0; Hðt ¼ 0Þ ¼ H0;

Hpðt ¼ 0Þ ¼ Hp0: ð33Þ

It must be pointed out that, because of the mass-energy transfer
analogy, the governing equations of the equivalent mass transfer
problem are identical in form to those of the energy transfer prob-
lem. Hence, the numerical scheme that will be described in the next
section may be used for the solution of the coupled mass transfer and
particle motion problem without any significant modifications.

3. Numerical implementation

Since the velocity and temperature fields are coupled, the gov-
erning equations should be solved at each time step. The following
steps are used in the solution procedure:
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1. Compute the velocity in the solid region using Eq. (26).
2. Compute the force density term using Eq. (24).
3. Solve the modified Navier–Stokes Eq. (23) for the entire

domain.
4. Compute the energy density term using Eq. (28).
5. Solve the temperature field of the entire computational domain

using Eq. (27).
6. Solve the equations of motions (29) and (30) to obtain the

translational and angular velocities of the particles.
7. Determinate the particle temperature using Eq. (31) if particle

temperature changes with time.

The process outlined in steps 1–7 completes one time step of
the computations. We have implemented this method to a simple
two-dimensional problem with circular particles suspended in the
flow and present the results in the following sections.

3.1. Solution of the velocity field

The procedure for solving the momentum equation with the di-
rect-forcing scheme is well documented [8–10]. Most of the meth-
ods used in these references have implemented the no-slip
boundary condition without enforcing the rigidity of solid parti-
cles. In the method described here, the rigidity of the solid particles
is enforced at the surface and in the interior of the particles. A stag-
gered grid is used as the Eulerian grid for the entire flow domain as
shown in Fig. 2. In order to improve the computational accuracy,
both the velocity components and the force density component
are defined at the same locations, at the center of the faces of each
cell. The pressure, temperature and energy density are defined at
the center of the cell.

In order to solve the momentum and energy equations, the dif-
ferential equations were discretized and solved by using a fully ex-
plicit finite difference scheme, though it can be readily extended to
other implicit schemes. The procedure for the implementation of
this explicit scheme is as follows:

1. Solve for the provisional velocity field, u*:

~u� �~un

Dt
þ~un � ~r~un ¼ 1

Re
r2~un þ Gr

Re2 Hn~eg þ~f n ð34Þ

2. Solve for the pressure field p,

r2pnþ1 ¼
~r �~u�

Dt
ð35Þ

3. Update the velocity field:

~unþ1 ¼~u� � Dt~rpnþ1: ð36Þ

The force density term, f, has been calculated using the direct-
forcing method by enforcing the velocity in the solid regions to
Fig. 2. The staggered Eulerian grid used for solving fluid velocity and temperature.
conform to the rigid body motion. A Lagrangian grid is used to en-
force the rigid-body motion inside the region of the particles and
the constraint of the equality of temperatures at the surface of
the particles, as shown in Fig. 3. The number of cells used depends
on the size of the particles. Fig. 3 shows a total of 76 cells used for a
circular particle with radius equal to 5 times the distance dx (dx is
the discretization space for Eulerian grid). The forcing term is com-
puted at the midpoint of the cells, which are denoted by dots in
Fig. 3. A similar Lagrangian grid has also been used by Uhlmann
[29]. The usual practice for the choice of the size of the Lagrangian
cells is to make the volume of a Lagrangian cell approximately
equal to the volume of a regular Eulerian cell. When enforcing
the temperature field for the solid region, one might only use the
exterior cells since the interior temperature field is uniform and
does not affect the fluid temperature.

The force density term is computed at each Lagrangian node as
follows:

~f n
L ¼

~Un
L �~un

L

Dt
þ~un

L � ~r~un
L �

1
Re
r2~un

L þ ~rpn
L �

Gr

Re2 Hn
L~eg : ð37Þ

The subscript L indicates the values at Lagrangian nodes. The values
of velocity, pressure and temperature at these nodes are obtained
by a bi-linear interpolation using the values of neighboring Eulerian
nodes. Un

L is the velocity of a Lagrangian node located at x and cal-
culated by the expression: Un

L ¼ ~Un
P þ ~xP � ð~x�~xPÞ. While solving

for the velocity field on the Eulerian grid using Eqs. (34) through
(36), the force density is distributed from the Lagrangian nodes to
the Eulerian nodes using the delta function, as described by Feng
and Michaelides [8].

The fluid temperature field, Hn+1, is also solved explicitly,

Hnþ1 �Hn

Dt
þ~un � ~rHn ¼ 1

Pe
r2Hn þ qn þ kn

k : ð38Þ

To force the temperature in the solid region or solid boundary to be
equal to the particle temperature Hn

P , the energy density is com-
puted using the following expression on the Lagrangian nodes,

kn ¼
Hn

p �Hn
L

Dt
þ~un � ~rHn

L �
1
Pe
r2Hn

L � qn ð39Þ

where HP is the particle temperature. The particle temperature is
calculated by applying the energy balance equation,

ðqrcr � 1ÞVp
Hn

p �Hn�1
p

dt
¼
Z

S
ðkþ qpÞdv ð40Þ
Fig. 3. Lagrangian grid for a circular cylinder of radius equal to 5 dx.



Fig. 4. Schematic diagram of a circular cylinder placed eccentrically in a square
enclosure.
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The temperature and velocity at each Lagrangian node are obtained
by using a bi-linear interpolation with reference points its neigh-
boring Eulerian nodes. The newly calculated energy density is then
distributed into the Lagrangian nodes using a delta function.

3.2. Motion of particles

The equations of particulate motion are Eqs. (29) and (30), and
may be discretized as follows:

ðqr � 1ÞVr

~Unþ1
p � U

*
n
p

dt
¼
X

L

~f n
LdVL þ ðqr � 1ÞVP

gLref

U2
ref

~eg ð41Þ

IPðqr � 1Þ
~xnþ1

p �xn
p

dt
¼ �

X
L

ð~xL �~xn
pÞ �~f n

LdVL: ð42Þ

The summation is carried out over all the Lagrangian nodes
within the particulate region. However, we found from the imple-
mentation of this method that the solution becomes unstable
when the particle–fluid density ratio is small. This has also been
observed by other authors [10,20]. Uhlmann [7] found that with
an implicit solver of the Navier–Stokes equations, he was able to
achieve a stable solution at qr = 1.05. To overcome this problem,
one method is to commence with the dimensionless form of Eqs.
(3) and (4) and to evaluate the interaction force and the angular
impulse directly by performing the numerical integration over
the particle boundary. We propose a simple, yet very effective,
alternative approach to overcome the instability issue [9]. We dis-
cretized the Eqs. (29) and (30) by the following technique:

qrVp

~Unþ1
p � U

*
n
p

dt
¼
X

L

~f n
LdVL þ Vp~an

p þ ðqr � 1ÞVP
gLref

U2
ref

~eg ; ð43Þ

and

qrIP

~xnþ1
p � ~xn

p

dt
¼ �

X
L

ð~xL �~xn
pÞ �~f n

LdVL þ IP~an
P ; ð44Þ

where ~ap and ~ap are the translational acceleration and angular
acceleration, respectively. These quantities are evaluated explicitly:

~an
p ¼

~Un
p � ~Un�1

p

dt
; ~an

p ¼
~xn

p � ~xn�1
p

dt
: ð45Þ

This approach works well even for light particles with qr = 1.00232,
as it will become apparent in the results of Section 4.2. In fact, it
works for particles of the same density of fluid, as demonstrated
in an example in Section 4.3. It must be pointed out that the insta-
bility issue does not arise in some fully implicit schemes, such as
those formulations used in Refs. [14,16].

3.3. Temperature of particles

It is obvious that the particle energy balance Eq. (40) will be of a
singular form when qrcr equals to 1; and instability arises as
(1 � qrcr) becomes small. To resolve this issue, we discretize Eq.
(40) as follows:

qrVpcr
Hnþ1

p �Hn
p

dt
¼
X

L

qn
LdVL þ Vp

dH
dt

� �n

p

þ
Z

S
qpdv ð46Þ

and the time rate of particle temperature is evaluated by

dH
dt

� �n

p
¼

Hn
p �Hn�1

p

dt
: ð47Þ

Such treatment allows us to simulate the extreme case of qrcr = 1
successfully, as shown in Section 4.3.
A collision algorithm is also necessary to prevent the particles
from overlapping and from stopping the simulation for a system
of interacting particles. In the present work, we adopted the same
collision scheme as the one we have successfully used in our pre-
vious studies [8].

4. Numerical simulation results

We conducted a series of simulations to demonstrate the valid-
ity and robustness of the proposed numerical method. The first
case we considered is the natural convection of a stationary heated
circular cylinder, placed in a square duct; the second case is the
sedimentation of a cold particle in an infinite channel; the third
case is the motion of a catalyst particle in an enclosure in which
the temperature of the particle varies with time; finally, the sedi-
mentation of 56 particles in a fluid has been investigated.

4.1. A circular cylinder placed eccentrically in a square enclosure

The problem of natural convection of a circular cylinder placed
eccentrically in a square enclosure has been studied extensively
[24,26]. This fundamental problem has been investigated experi-
mentally by many and numerically by Demirdzic et al. [28]. A sche-
matic illustration of the problem is shown in Fig. 4, where a heated
cylinder at rest is placed eccentrically in a square enclosure filled
with a Newtonian fluid. The cylinder has a higher constant temper-
ature at its boundary compared to the ambient temperature of the
fluid and, as a result, natural convection occurs. We studied the
heat convection from the cylinder at steady state and chose the
length of the square sides to be the reference length. The parame-
ters of the computation are as follows: the diameter of cylinder is
d = 0.4, the eccentric distance is e = 0.1, the dimensionless temper-
atures are 1 for the cylinder boundary and 0 for the ambient fluid,
the adiabatic boundary conditions are used at the top and bottom
walls, and constant (0) temperature is assumed on both the left
and right side walls. The dimensionless flow numbers are: Rey-
nolds number, Re = 0.1; Prandtl number Pr = 10; and Grashoff num-
ber Gr = 100,000.

Fig. 5 shows the local Nusselt numbers along one of the side
walls computed by the present method and by Pacheco et al.
[26] using a 200 � 200 grid. The simulation results of the present
method have been obtained using a coarser 100 � 100 grid. It is
apparent that the results agree very well with the results by Pach-
eco et al. [26]. The small discrepancy close to the wall (x = 0.5) is
most likely due to the coarser grid used in this simulation.

The fluid velocity vector and isotherms of this problem are plot-
ted in Fig. 6. One may observe two relatively large circulation re-
gions on both the left and the right sides of the cavity that
sweep in the upper area of the flow. These two circulation regions



Fig. 5. Local Nusselt number along the side wall for Re = 0.1, Pr = 10 and Gr = 105.

Fig. 7. The lateral position of a cold particle setting in an infinite channel at
different Grashoff numbers.
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dominate the flow motion and create a strong convection current
that causes higher temperature to be built in the region near the
top wall. In the region near the bottom wall, the convection is
weak, signifying that cooling is mainly caused by conduction.

4.2. A particle with fixed temperature settling in an infinite channel

The problem of the sedimentation of a cold particle with con-
stant temperature settling between two infinite vertical parallel
planes was first studied by Gan et al. [22] using a boundary-fitted
ALE method, and then was revisited by Yu et al. [24] as a validation
problem for their fictitious domain method. These researchers
found that the lateral equilibrium position of the particle depends
strongly on the Grashoff number. The motion of the particle ranged
from settling steadily along the centerline of the channel to regular
oscillations about the centerline.

We chose the diameter of the particle as the reference length.
The width of the channel is 4. The height of the computational do-
main is 32, but this domain is shifting while the particle is settling,
thus simulating a flow in an infinite channel. We chose
Uref ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
paðqr � 1Þg

p
as the reference velocity. For the flow param-

eters we chose: Re = 40.5, Pr = 0.7, qr = 1.00232, and cr = 1. These
are the same as used by Yu et al. [24]. The dimensionless temper-
ature is equal to �1 on the particle boundary and initially 0
throughout the fluid domain. The particle is initially placed at
one and half diameters off the centerline. An 80 � 480 grid is used
for all the simulations; the time step is chosen to ensure that CFL
number is less than 0.2.
Fig. 6. Velocity vector map and isotherms for Re = 0.1, Pr
Fig. 7 shows the lateral positions of the particle at Gr = 0, 100, 564,
1000, 2000, 2500 and 4500, respectively. It is observed that the par-
ticle experiences a weak oscillation around its centerline at Gr = 564
with an amplitude well below 5% of the particle diameter. However,
at Gr = 4500, the particle encounters intensive vibrations with
amplitudes about 1.4 times its diameter. The velocity components
at Gr = 4500 shows the strong but regular oscillations. These results
confirm the flow regimes that were reported by Yu et al. [24].

Table 1 lists the lateral equilibrium positions for Gr = 1000 and
2000, and the amplitude of lateral oscillation for Gr = 4500. These
values are measured with respect to the centerline of the channel.
Our results show almost perfect agreement compared to those ob-
tained by Yu et al. [24].

The simulation results presented in this section not only show
that our method works for constant particle temperature; they also
demonstrate that the updating scheme for particle motion outlined
in Eqs. (43) and (44) is stable even for a particle–fluid density ratio
qr = 1.00232.

4.3. Motion of a catalyst particle with freely varied temperature

The DNS method developed in this paper can be also used to
solve particle–fluid heat transfer problems where the temperature
of particles changes with time, provided that the particle–fluid
= 10 and Gr = 105. (a) Velocity vector; (b) isotherms.



Table 1
Equilibrium position or amplitude of oscillation with respect to the centerline

Gr Present Yu et al. [24]

1000 1.90 1.89
2000 1.73 1.74
4500 1.35 1.33

Fig. 8. Evolution of the vertical velocity of a catalyst particle moving in an
enclosure.
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thermal conductivity ratio is high. Yu et al. [24] studied the motion
of a catalyst particle in an enclosure where the particle tempera-
ture is allowed to change both in time and space. They considered
the following three cases:

a. qr = 1.1, cr = 1, kr = 15;
b. qr = 1.6, cr = 1, kr = 5;
c. qr = 100, cr = 1, kr = 15.

It is expected that our DNS method should be able to produce a
good approximation for cases (a) and (c) where kr = 15. This moti-
vates us to revisit these cases. In addition, we add another case (we
name it as case d) where qr = 1 and cr = 1 to demonstrate that the
Fig. 9. Temperature contours and velocity vector for a catalyst partic
particle motion and temperature updating scheme works for parti-
cles of the same density and the same specific heat as fluid. How-
ever, the reference velocity of

ffiffi
ð

p
paðqr � 1ÞgÞ used for cases (a), (b)

and (c) will yield zero for case (d), thus we choose a reference
velocity of

ffiffi
ð

p
pagÞ instead. The enclosure is 8a wide and 16a high

(a is the radius of particle). Initially the particle is located at the
center of the enclosure; fluid and particle have zero velocity and
temperature. The particle has a constant heat source of qp = 1 over
its entire region. We set Re = 40, Pr = 0.7 and Gr = 1000. A grid of
240 � 480 is used for all these cases.

We plotted the evolution of the particle vertical velocity in
Fig. 8. It is seen that the particle in case (a) and (b) falls downward
at the beginning due to the gravity force; however, as the particle
temperature rises because of the release of heat source within it, so
does the temperature-gradient induced buoyancy force; at certain
point this buoyancy force is able to overcome the gravity force, and
the particle begins to have upward acceleration at t > 3. At t > 7 for
case (a) or t > 8 for case (b), the particle starts to reverse the direc-
tion and moves upward until it experiences the resistance caused
by the presence of the upper wall. The particle in case (c) has a
much higher particle–fluid density and the gravity force domi-
nated the particle’s downward motion. On the other hand, the par-
ticle in case (d) has the same density as fluid and its upward
motion is controlled by the temperature-gradient induced buoy-
ancy force. The results for cases (a), (b) and (c) taken form Yu
et al. [24] are also plotted in Fig. 8 for comparisons.

It must be pointed out that the DNS method developed in this
paper assumes the particle has a higher particle–fluid thermal con-
ductivity and the particle temperature is assumed to be uniform.
From Fig. 8, it shows a very good agreement for cases (a) and (c)
where kr = 15 between the results from our DNS method and those
obtained by fictitious domain method. Even for case (b) where a
moderate kr is used (kr = 5), we found that our DNS result approx-
imates the one obtained by Yu et al. [24] reasonably well. In addi-
tion, the success of achieving stable results for case (c) and (d)
signifies that the updating scheme described by Eqs. (43), (44)
and (46) can be used for either very high density particle or particle
of the same density and the same specific heat as fluid. Fig. 9 shows
the temperature contour and velocity vector map at three different
times for a catalyst particle moving in an enclosure.

We also conduct the grid size test and time step test using case (a)
of qr = 1.1; results for the vertical velocity vs. time are plotted in
le of density 1.6 in an enclosure at t = 5, 15 and 20, respectively.



Fig. 10. Evolution of vertical velocity of a catalyst particle with qr = 1.1 using different grid size and time step.
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Fig. 10. It shows that the simulation results become insensitive as the
time step dt6 0.004. It also indicates that the difference in results
using dx = 0.033 (a grid of 240� 480) and dx = 0.025 (a grid of 320�
640) is insignificant when the same time step dt = 0.0031 is used.

4.4. Sedimentation of 56 interacting circular particles in an enclosure

We also considered the sedimentation of 56 heated circular par-
ticles in an enclosure. The particles are initially hot and, because of
the energy exchange with the fluid, their temperature changes
according to Eq. (46). The physical parameters are as follows: do-
main size X = [0,3] � [0,6]; particle radius r = 0.08; fluid viscosity
mf = 0.002; particle–fluid density and heat capacity ratios qr = 1.5
and cr = 5.0; Pr = 1; and Gr = 200. A 256 � 512 grid is used, which
implies r � 6.8. Thus, the particle diameter is outlined by 13.6 grid
points. The time step is dt = 0.0005.

Fig. 11 shows the temperature contours at three different stages
of the settling process. Initially, the top region is heated up by the
Fig. 11. Temperature contours of 56 c
presence of the hot particles. As the heavier particles settle and
move downwards, they cause a strong fluid motion, which may
be observed in the velocity vector map of Fig. 12. This results in sig-
nificant mixing in the fluid and higher uniformity of the tempera-
ture. As the particles settle, they also cool, with the cooling effect
being more pronounced with the leading particles. It is apparent
in the calculations and Fig. 11 that the particles following in the
thermal wakes of others have higher temperature than those of
the leading particles.

Fig. 12a depicts the velocity vectors of the entire flow domain at
t = 9. In order to elucidate the effectiveness of our forcing scheme,
we have chosen a small part of this figure with three particles and
magnified the velocity field, as shown in Fig. 12b. It is observed
that the rigid body motion of the particle interior region is enforced
very well using the numerical technique presented in this study.
The temperature contours, which are depicted in Fig. 12c show
clearly the strong temperature gradients in the vicinity of the
particles.
ircular particles at t = 3, 6 and 9.



Fig. 12. Detailed velocity and temperature fields around particles at t = 9. The small box in part (a) indicates the area of the details in parts (b) and (c). (a) Velocity vectors; (b)
detailed velocity field; (c) temperature contours.
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5. Conclusions

A numerical method that is based on DNS and solves both the
momentum and heat interactions in particulate flows has been
developed. In order to enforce the rigid body motion of solid parti-
cles, a force density function has been placed in the entire region
where the particles are present. This force density field has been
calculated using a direct-forcing scheme. We used an analogous
method and an energy density function to enforce the uniform
temperature conditions in the regions that are occupied by parti-
cles of high thermal conductivity. The velocity and temperature
of the particles are obtained by solving the set of ordinary differen-
tial equations, which represent the Lagrangian equation of motion
and the energy equation of the particles. The numerical method
developed was validated by comparisons with cases pertaining to
the motion of particles with constant temperature as well as to
the motion of particles with time-dependent temperature. Results
obtained with a group of 56 particles that cool while settling, show
how the local temperature field and buoyancy force affects the sed-
imentation process and the transfer of energy; they also show that
this novel DNS method may be accurately used with particulate
systems of a large number of particles, where the particulate mo-
tion and heat transfer occur simultaneously.
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